
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Beagle
Quality Control Report

Annika Berger, Joshua Gleitze, Roman Langrehr,
Christoph Michelbach, Ansgar Spiegler, Michael Vogt

6th of March 2016

at the Department of Informatics
Institute for Program Structures and Data Organization (IPD)

Reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek
Advisor: M.Sc. Axel Busch
Second advisor: M.Sc. Michael Langhammer

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

1 Tests

1.1 JUnit Tests

As of this writing (2016-03-06) we use about 400 automated JUnit tests to test Beagle
on a per-method level. Every merge into the upstream master requires these tests to
pass. For more details see 1.2.1.

1.2 Integration Tests

1.2.1 T200

Every time something is added to Beagle, Travis sets up an Ubuntu system with only
the speci�ed software installed. The combination of code already in the upstream
master and the changes in question then has to pass all automated tests in order to
be mergeable. Thus it is always guaranteed that Beagle as of its state in the upstream
master passes all automated tests on a system with only the speci�ed software installed.

1.2.2 T210

Beagle has been tested manually to work with Kieker.

1.2.3 T220

Beagle does obey the PCM standards when writing data and is not required for Palladio
to access the PCM after it has been created.

1.2.4 OT200

Beagle has been tested on Linux and Windows operating systems.

1

1 Tests

1.3 Tests Defined in SRS

1.3.1 Mandatory

All mandatory tests de�ned in the SRS (/T10/ – /T60/) are tested either automatically us-
ing JUnit or manually. Instructions of how to proceed in manual tests and what to expect
for a successful test can be found in Manual Beagle/Documentation/ManualTests.MD.

1.3.2 Optional

• /OT10/ and /OT20/ are tested automatically using JUnit tests.

• /OT50/ is partly tested with manual tests but a full test requires a bigger project
which as of yet we don’t have available.

• /OT40/ has not been tested because of practical reasons.

• The optional feature for /OT70/ has been implemented and was tested manually.
Instructions for manual testing can be found in Manual Tests.md.

• /OT60/ has been deemed impractical because no practical way of combining old
results with new results could be found.

• /OT100/ is inherently ful�lled in our approach.

• All optional tests not mentioned above are omitted because the features they are
testing are optional features which have not been implemented.

2

2 Bugs

2.1 Implementation Phase

There were no known bugs or other undesired behaviour at the end of the implemen-
tation phase. We were not able to �nd any such during the quality assurance phase
either. Therefore no bugs which originated in the implementation phase were �xed.

2.2 Quality Assurance Phase

Due to our policy to only merge branches into the upstream master if they are free
of knows bugs and other undesired behaviour, we never introduced code known to
contain errors into our upstream master. As of this writing (2016-03-06) there have
been no occurrences of subsequent detection of bugs in upstream master either.

3

3 Changes

3.1 GUI

During the implementation phase a GUI consisting of a jWizard and a jDialog was
created. During the quality assurance phase we removed the jWizard part of the GUI
and replaced it by a launch con�guration. The jDialog code remained the same but
was moved from GuiController.java to ProgressDialogController.java. The launch
con�guration o�ers everything the jWizard solution o�ered and also makes it possible
to deselect elements to analyse.

5

4 Additional Features

4.1 Adaptive Timeout

Implementing an adaptive timeout is an optional feature listed in the SRS. We consider
an adaptive timeout a valuable extension of Beagle’s original features because it allows
evaluation to a reasonable degree of accuracy devoid of excessive CPU time consumption
without the user being required to be able to estimate the required time (confer constant
timeout).

An adaptive timeout based on linear regression was implemented �rst but later
having the adaptive timeout based on the ageing algorithm was consistently agreed
upon to make better predictions and to be better �tted for practice. Thus, Beagle now
features an adaptive timeout based on the ageing algorithm.

4.2 Pausing and Continuing

We decided to implement the optional pausing and continuing feature. The user can
pause / resume / abort the analysis via the buttons provided in the dialog shown while
Beagle is running.

Pausing happens softly which means that the current AnalysisController loop
round (as de�ned in the Software Requirements Speci�cation) is �nished and the
FinalJudge is called before the thread goes to sleep. Contrary to this, aborting still
lets the current measurement tool / ProposedExpressionAnalyser �nish to avoid data
inconsistencies but does not call the FinalJudge.

7

	Contents
	Tests
	JUnit Tests
	Integration Tests
	T200
	T210
	T220
	OT200

	Tests Defined in SRS
	Mandatory
	Optional

	Bugs
	Implementation Phase
	Quality Assurance Phase

	Changes
	GUI

	Additional Features
	Adaptive Timeout
	Pausing and Continuing

